cho \(\hept{\begin{cases}a+b-c=1\\a^2+b^2+c^2=1\\\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\end{cases}}CMR:xy+yz+zx=0\)
\(CMR:\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1&\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0&\end{cases}}\)
Thì \(:\hept{\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1}\)
a) CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-zx\right)}\)với x khác y , xyz khác 0 , yz khác 1 , xz khác 1 m thì xy+xz+yz= xyz(x+y+z)
:b) Cho a, b , c là các số thực khác 0 và thỏa mãn :
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2017}+b^{2017}+c^{2017}=1\end{cases}}\)
Tính giá trị của biểu thức P= \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
cho các số a;b;c khác -1 thỏa mãn \(\hept{\begin{cases}x=by+cz\\y=cz+ax\\z=ax+by\end{cases}}\)
tính giá trị A=\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)
Cho a,b,c ,(a+b+c) là các số thực khác 0 thỏa mãn điều kiện: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính \(A=a^{2021}+b^{2021}+c^{2021}\)
có bao nhiêu bộ ba số nguyên a,b,c thỏa mãn hệ
\(\hept{\begin{cases}ab+bc+ca=0\\\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{4}=0\end{cases}}\)
Cho x,y,z khác 0 thỏa mãn \(\hept{\begin{cases}x+y+z=1\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{cases}}\)
Tính x2+y2+z2
Câu 1: x>0,Tìm min A = \(3x^2\)+\(\frac{2}{x^3}\)
Câu 2: x,y>0 Tìm min S = \(\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Câu 3: \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\) Tìm min P \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
giải hệ phương trình
a,\(\hept{\begin{cases}2x^2+xy=3x\\2y^2+xy=3y\end{cases}}\)b,\(\hept{\begin{cases}y^2=x^3-3x^2+2x\\x^2=y^3-3y^2+2y\end{cases}}\)
c,\(\hept{\begin{cases}3x+y=\frac{1}{x^2}\\3y+x=\frac{1}{y^2}\end{cases}}\)
d,\(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)