Bổ sung đề : Tìm : \(GTLN\)của \(P=a+b+c\)
Ta có : \(\hept{\begin{cases}a+3c=2016\left(1\right)\\a+2b=2017\left(2\right)\end{cases}}\)
Từ (1) , \(\Rightarrow a=2016-3c\)
Lấy (2) trừ (1) ta được :
\(2b-3c=1\)\(\Leftrightarrow b=\frac{1+3c}{2}\)
Khi đó : \(P=a+b+c\)
\(=\left(2016-3c\right)+\frac{1+3c}{2}+c\)
\(=\left(2016+\frac{1}{2}\right)+\left(\frac{-6c+3c+2c}{2}\right)\)
\(=2016\frac{1}{2}-\frac{c}{2}\)
Do a,b,c không âm nên : \(P=2016\frac{1}{2}-\frac{c}{2}\le2016\frac{1}{2}\)
\(\Rightarrow Pmax=2016\frac{1}{2}\Leftrightarrow c=0\)