Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Giang

Cho các số a, b, c không âm thỏa mãn: a + 3c =2016; a + 2b =2017. Tìm GTLN của biểu thức: P = a + b + c

๖²⁴ʱƘ-ƔℌŤ༉
11 tháng 8 2019 lúc 8:12

\(\hept{\begin{cases}a+3c=2016\\a+2b=2017\end{cases}}\left(1\right)\)

Cộng từng vế của hệ (1), ta được:

\(2a+2b+3c=4033\)

\(\Leftrightarrow2a+2b+2c=4033-c\)

\(\Leftrightarrow2\left(a+b+c\right)=4033-c\)

Vì c không âm nên \(4033-c\le4033\)

\(\Rightarrow a+b+c\le\frac{4033}{2}=2016\frac{1}{2}\)

Vậy GTLN của P là \(2016\frac{1}{2}\Leftrightarrow c=0\)

Lúc đó: \(a=2016;b=\frac{1}{2}\)

Phan Nghĩa
13 tháng 7 2020 lúc 9:32

Ta có: a + 3c = 2016 ; a + 2b = 2017

Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033  

Suy ra: 2 (a + b + c) = 4033 - c

Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất

Nên c nhỏ nhất , mà c >= 0 nên c = 0.

Từ đó ta suy ra  : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5

Vậy Max P = 2016,5 

Khi c = 0 ; a = 2016 ; b = 0,5

Khách vãng lai đã xóa

Các câu hỏi tương tự
Jame Blunt
Xem chi tiết
phan hải thuận
Xem chi tiết
Xem chi tiết
Dương Tiến	Khánh
Xem chi tiết
Lê Thị Trang
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Mai Thanh Tâm
Xem chi tiết
nguyễn văn đạt
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết