\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=2k;y=3k\)
\(\Rightarrow A=13.\frac{2k-2.3k}{2.2k+3.3k}=13.\frac{k\left(2-2.3\right)}{k\left(2.2+3.3\right)}=13.\frac{2-6}{4+9}=13.\frac{-4}{13}=-4\)
Vậy A = - 4
\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=2k;y=3k\)
\(\Rightarrow A=13.\frac{2k-2.3k}{2.2k+3.3k}=13.\frac{k\left(2-2.3\right)}{k\left(2.2+3.3\right)}=13.\frac{2-6}{4+9}=13.\frac{-4}{13}=-4\)
Vậy A = - 4
Cho bt A= 13*(x-2y)/2x+3y . Giá trị của biểu thức A khi x/2=y/3 và x,y khác 0 là
Cho biểu thức : \(A=\frac{13\left(x-2y\right)}{2x+3y}\). Giá trị của biểu thức A khi \(\frac{x}{2}=\frac{y}{3}\) với x, y khác 0
\(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\frac{2015}{2016}\right)^0\)
Tính giá trị biểu thức
a)A=5a-b
\(A=5a-b/3a-2b \) với \(\frac{a}{b}=\frac{5}{7}\)
\(B=\frac{3x-5}{2x-y}-\frac{4y+5}{x+3y}\)với x-y=5 và x khác -3y và y khác -2x
\(c=x\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)biết x+y+1=0
Cho xyz=2, x+y+z=0 tính D=(x+y)(y+z)(z+x)
\(E=\frac{x^3+6x+4}{x+2}\)với \(^{x^2-x=0}\)
Tìm x,y biết
a)\(\frac{4+x}{7+y}=\frac{4}{7}\)và x+y =22
b) Cho \(\frac{x}{3}=\frac{y}{4}\)và \(\frac{y}{5}=\frac{z}{6}\)tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)
c) Tính giá trị của biểu thức sau , biết x+y-2=0
M=x3+x2y-2x2-xy-y2+3y+x+2006
d) Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c khác 0.tính\(\frac{a^3b^2c^{1930}}{a^{1935}}\)
Cho x,y,z,t khác 0 thỏa mãn \(\frac{x+y+z-3t}{x}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+Y-3z}{z}\) và x+y+z+t=2012
Tính A= x+2y-3z+t
bài1 ) \(\frac{x}{2}\)= \(\frac{2y}{3}\)và 2x + 3y = -1
bài 2 ) Cho \(\frac{x}{3}\)= \(\frac{2y}{5}\)
a) Tính A = \(\frac{2x-y}{x+2y}\)
b) Tính B= \(\frac{5x+\frac{1}{2}y}{\frac{1}{3}x-y}\)
Tính: B=\(\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}\)khi x,y,z là các số thực khác 0 và\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)