Để tìm GTLN của biểu thức P, bạn phỉa tìm giá trị của biểu thức Q:
Q= \(\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x+1}}\right)\)
Q= \(\dfrac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left|x\right|-1-\left|x\right|+4}{\left(\sqrt{x}-2\right)}\)
Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
Q= \(\dfrac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3}\)
Q= \(\dfrac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\) = \(\dfrac{2\sqrt{x}+2}{3\sqrt{x}}\) (Đây là kết quả cuối cùng của x cho
biểu thức Q)
Bây giờ bạn chỉ cần thay x (giá trị của Q) và biểu thức P. Đó là GTLN của biểu thức P. Chúc bạn học tốt !!!