tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)
Cho biểu thức :
P = \(\left(\dfrac{x^2}{x^2-y^2}+\dfrac{y}{x-y}\right):\dfrac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\) ( với x khác \(\)y )
Gía trị của biểu thức P khi x + y = 5 và xy = -\(\dfrac{1}{2}\)
Bài 1: Tính giá trị biểu thức:
\(A=5x\left(x-4y\right)-4y\left(y-5x\right)\) với \(x=-\frac{1}{5};y=-\frac{1}{2}\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
Với x = \(\frac{1}{2}\); y = 2
Bài 2: Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)
Bài 1:
a) Cho x>y>0 và \(\frac{x^2+y^2}{xy}\)= \(\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A= \(\frac{5x^2-x+1}{x^2}\), x≠0
Bài 2: Chứng minh rằng:
\(\frac{x-y}{1+xy}\)+\(\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a) P= x2+3x+3
b) Q= x2+2y2+2xy-2y
a) Cho y>x>0 và \(\frac{x^2+y^2}{xy}=\frac{10}{3}\). Tính giá trị của biểu thức M=\(\frac{x-y}{x+y}\)
b) Tìm giá trị nhỏ nhất của A=\(\frac{5x^2-x+1}{x^2}\), x≠0.
Cho x,y dương thỏa mãn x+y = 3. Tìm GTNN của biểu thức:
\(P=\frac{5}{x^2+y^2}+\frac{3}{xy}\)
Biết \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0 . Khi đó giá trị biểu thức A = \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\) là :
Bài 1: Rút gọn biểu thức sau:\(A=\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}\)
Bài 2:
Cho biểu thức \(A=\frac{x}{x-5}-\frac{10x}{x^2-25}-\frac{5}{x+5}\)
a) Tập xác định của biểu thức A là gì?
b) Rút gọn biểu thức A
c) Khi $x=9$ thì A bằng bao nhiêu?
Bài 3: Cho biểu thức \(B=\left(\frac{4}{x^3-4x}+\frac{1}{x+2}\right):\frac{2x-4-x^2}{2x^2+4x}\)
a) Tìm tập xác định và rút gọn $B$
b) Tại $x=1$ thì $B$ bằng bao nhiêu?
c) Tìm giá trị nguyên của x để $B$ nhận giá trị nguyên.
Cho x+y=5,xy=6. Tính giá trị biểu thức:
A=\(x^2+y^2\)
B=\(x^3+y^3\)
C=x\(^2\)-y\(^2\)
D=\(\frac{y}{x}+\frac{x}{y}\)