Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Trà

Cho biểu thức: \(P=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\) với x≥0 , x≠4

a)Chứng minh \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

b)Tìm giá trị lớn nhất của P

Trần Đăng Nhất
11 tháng 4 2020 lúc 10:51

a/ \(P=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\left(ĐKXĐ:x\ge0,x\ne4\right)\)

\(\Leftrightarrow P=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(\Leftrightarrow P=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

b/ \(P=\frac{\sqrt{x}+1+1}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1}\)

$P$ đạt giá trị lớn nhất \(\Leftrightarrow\left(\sqrt{x}+1\right)\) đạt GTNN

\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\) đạt giá trị nhỏ nhất là $1$ tại \(x=0\)

Vậy \(MaxP=2\Leftrightarrow x=0\)

KL: ...................


Các câu hỏi tương tự
Thanh Trà
Xem chi tiết
Love Music Nightcore
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Thanh Trà
Xem chi tiết
Lê Nguyễn Ngọc Trâm
Xem chi tiết
Pham Thanh Thuong
Xem chi tiết
nguyễn thành
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
Nguyễn Hàn Băng
Xem chi tiết