cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng d:\(y=\left(m+1\right)x-m^2-\dfrac{1}{2}\) (m là tham số)
tìm các giá trị của m thì đường thẳng d cắt parabol (P) tại 2 điểm \(A\left(x_1;y_1\right)\), \(B\left(x_2;y_2\right)\) sao cho biểu thức \(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\) đạt GTNN
biết rằng parabol \(y=x^2+x+1\) cắt parabol \(y=-x^2+2x+4\) tại 2 điểm phân biệt có hoành độ lần lượt là \(x_1\) và \(x_2\). tính giá trị biểu thức \(P=x_1^3+x_2^3\)
Cho biểu thức A=\(\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
a)Rút gọn biểu thức A
b)Tính giá trị của biểu thức A khi \(x=\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
TÌm tất cả các giá trị của tham số a để giá trị nhỏ nhất của hàm số y = f(x) = 4x^2-4ax +(a^2 - 3x + 2) trên đoạn [0,2] là bằng 3
Cho biểu thức M=x/x+1-2x/x^2-1-1/1-x.
a Tìm điều kiện xác định và rút gọn M
b Tính giá trị của M khi x thỏa mạn x^2-x=0
c Tìm tất cả các giá trị nguyên của x để M có giá trị nhỏ nhất
Cho x>0 , y>0. Tìm giá trị nhỏ nhất của biểu thức
A= \(3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)+10\)
a) Q = 20 - [3 -x]
Tìm x nguyên để các biểu thức sau đặt giá trị lớn nhất
cho hàm số y=mx^2+(3m-1)x+2m-3. Gọi A là giá trị nhỏ nhất của hàm số. Tìm m sao cho A đạt giá trị lớn nhất
cho biểu thức A=\([\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm điều kiện xác định
b)Rút gọn A
c)Biết xy=16 tìm các giá trị của x,y để A có giá trị nhỏ nhất, tìm giá trị đó.