ĐKXĐ: \(x>0;x\ne1\)
\(E=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\frac{x-1}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}}{x-1}+4\sqrt{x}\right):\left(\frac{x-1}{\sqrt{x}}\right)\)
\(=\frac{4x\sqrt{x}}{\left(x-1\right)}.\frac{\sqrt{x}}{\left(x-1\right)}=\frac{4x^2}{\left(x-1\right)^2}\)
Đề có nhầm ko bạn?
\(E=2\Rightarrow\left(\frac{2x}{x-1}\right)^2=2\Rightarrow\left[{}\begin{matrix}\frac{2x}{x-1}=\sqrt{2}\\\frac{2x}{x-1}=-\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\sqrt{2}x-\sqrt{2}\\2x=-\sqrt{2}x+\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-\sqrt{2}}{2-\sqrt{2}}< 0\left(l\right)\\x=\frac{\sqrt{2}}{2+\sqrt{2}}=\sqrt{2}-1\end{matrix}\right.\)