Áp dụng BĐT Bun nhia cốp xki :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
<=>\(\frac{1}{9a^3+3b^2+c}\le\frac{1}{9a}+\frac{1}{3}+c\Leftrightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
<=> \(\frac{a}{9a^3+3b^2+c}\le\frac{1}{9}+\frac{1}{3}a+ac\)
Làm tương tự với 2 cái còn lại
CỘng vế với vế ba BĐT => GTLN
tại sao
$\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge \left(a+b+c\right)^2=1$