\(L=\frac{a+b-b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1-\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(L=b\left(\frac{1}{b+c}-\frac{1}{a+b}\right)+\frac{c}{c+a}-\frac{1}{2}+\frac{3}{2}\)
\(L=\frac{b\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}+\frac{3}{2}=\left(a-c\right)\left(\frac{b}{\left(a+b\right)\left(b+c\right)}-\frac{1}{2\left(a+c\right)}\right)+\frac{3}{2}\)
\(L=\left(a-c\right)\left(\frac{ab+bc-ac-b^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)+\frac{3}{2}=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi ít nhất 2 trong 3 số bằng nhau
Ta có:
\(L=\frac{\sum\left(abc+a^2b+ca^2+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{3abc+2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}{2abc+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)}\).
Ta chứng minh \(L\ge\frac{3}{2}\). (*)
Thật vậy:
\(\left(\cdot\right)\Leftrightarrow a^2b+b^2c+c^2a\ge ab^2+bc^2+ca^2\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\ge0\left(Q.E.D\right)\).
(*) được chứng minh.
Vậy Min P = 0,125 khi a = b = c.