Cho a,b,c là độ dài 3 cạnh 1 tam giác và \(a\ge b\ge c\). Chứng minh rằng
\(\sqrt{a\left(a+b-\sqrt{ab}\right)}+\sqrt{b\left(a+c-\sqrt{ac}\right)}+\sqrt{c\left(c+b-\sqrt{bc}\right)}\ge a+b +c\)
Cho a, b, c \(\ge\)0 . thỏa a + b + c = 1
Chứng minh : \(\sqrt{a+\left(b-c\right)^2}+\sqrt{b+\left(c-a\right)^2}+\sqrt{c+\left(a-b\right)^2}\ge\sqrt{3}\)
Chứng minh với a; b; c; d > 0
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) \(\ge\) \(\left(a+b\right)\left(c+d\right)\)
Cho a,b,c>0 và \(ab+bc+ca\ge\frac{4}{3}\).chứng minh
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
Cho a, b, c, d >0. Chứng minh rằng: \(\sqrt{\left(a+b\right).\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)
Cho a,b,c > 0 và ab + bc + ca \(\ge\frac{4}{3}\)
Chứng minh :
\(\sqrt{a^2+\frac{1}{\left(b+1\right)^2}}+\sqrt{b^2+\frac{1}{\left(c+1\right)^2}}+\sqrt{c^2+\frac{1}{\left(a+1\right)^2}}\ge\frac{\sqrt{181}}{5}\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho c>0 và a,b≥c. Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Cho a,b,c>0.Chứng minh rằng\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ca}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)