Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Châu Hữu Phát

Cho \(a+b+c=0\)và \(a^2+b^2+c^2=14\).Tính giá trị của \(a^4+b^4+c^4\)

Mr Lazy
10 tháng 7 2015 lúc 22:51

Cách 1: 

\(+\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(+0=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=14+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=-7\)

\(+\left(-7\right)^2=\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab.bc+bc.ca+ca.ab\right)\)

\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2+2abc.0\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)

Từ các điều trên suy ra:

\(14^2=a^4+b^4+c^4+2.49\)

\(\Rightarrow a^4+b^4+c^4=14^2-2.49=98\)

 

Cách 2:

\(+a+b+c=0\Rightarrow a+b=-c\)

\(+14=a^2+b^2+c^2=a^2+b^2+\left(-a-b\right)^2=a^2+b^2+a^2+b^2+2ab=2\left(a^2+b^2+ab\right)\)

\(\Rightarrow a^2+b^2+ab=7\)

 

\(+a^4+b^4+c^4=a^4+b^4+\left[-\left(a+b\right)\right]^4=\left(a^2+b^2\right)^2-2a^2b^2+\left(a^2+b^2+2ab\right)^2\)

\(=\left(a^2+b^2\right)^2-2a^2b^2+\left(a^2+b^2\right)^2+4\left(a^2+b^2\right).ab+4a^2b^2\)

\(=2\left(a^2+b^2\right)^2+4\left(a^2+b^2\right).ab+2a^2b^2\)

\(=2\left(a^2+b^2+ab\right)^2\)

\(=2.7^2=98\)

 


Các câu hỏi tương tự
nguyễn quỳnh chi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Thư Lê
Xem chi tiết
Đỗ Đình Phúc
Xem chi tiết
Thanh Xuân
Xem chi tiết
TRANKHANHQUYEN
Xem chi tiết
Duong Thi Minh
Xem chi tiết
binn2011
Xem chi tiết
Vu Ha Phuong
Xem chi tiết