cho a,b,c > 0thỏa mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
cm \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
Bài 1 :
a) Cho 3 số hữu tỉ a,b,c thoả mãn : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\). Chứng minh rằng : \(A\text{=}\sqrt{a^2+b^2+c^2}\) là số hữu tỉ.
b) Cho 3 số x,y,z đôi một khác nhau . Chứng minh rằng : \(B\text{=}\sqrt{\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}}\) là một số hữu tỉ.
1)Cho 3 số thực dương a,b,c thỏa mãn \(ab+bc+ac=3abc\). Tìm gt lớn nhất của \(P=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)
2)Cho 3 số a,b,c là ba cạnh của một tam giác . Chứng minh \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9
Cho 3 số thực dương a,b,c thỏa mãn \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\frac{3}{2}\)Chứng minh rằng a^2+b^2+c^2=3/2
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Helpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
Help :(((((((((((((((((((((((((
Cho a,b,c à các số thực dương thỏa mãn abc=1. Chứng minh rằng
\(\dfrac{\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}}{abc}< \sqrt{2}\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\ge\dfrac{1}{2}\)