\(b^4+c^4+a=b^4+c^4+a.abc\)
+Chứng mih \(b^4+c^4\ge bc\left(b^2+c^2\right)\text{ (1)}\)
\(\left(1\right)\Leftrightarrow\frac{1}{2}.\left(b-c\right)^2\left[b^2+c^2+\left(b+c\right)^2\right]\ge0\)(đúng)
\(\Rightarrow b^4+c^4+a\ge bc\left(b^2+c^2\right)+a^2bc=bc\left(a^2+b^2+c^2\right)=\frac{1}{a}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a}{b^4+c^4+a}\le\frac{a^2}{a^2+b^2+c^2}\)
Tương tự và cộng lại ta sẽ có kết quả.