Xét ΔMAC có MA=MC và góc ACM=60 độ
nên ΔMAC đều
=>AM=AC=3a
Xét ΔMAC có MA=MC và góc ACM=60 độ
nên ΔMAC đều
=>AM=AC=3a
1 Hình vuông ABCD có cạnh AB=a. Gọi M là trung điểm của cạnh BC. Trên cạnh CD ta lấy điểm N sao cho khoảng cách từ đó đến đường thẳng AM bằng độ dài đoạn thẳng DN. Tính độ dài các đoạn thẳng AM, CN, MN
2 Cho tam giác vuông ABC vuông tại B có AB=3a, BC=4a. Ta dựng tam giác ACD vuông cân tại D sao cho D khác phía với B đối vớ đường thẳng AC. Tính độ dài AD,BD
cho tam giác abc có A^=90 độ AB= 6cm và AC = 8cm a/ tính Bc? b/ tính sin B và Tan C? C/ gọi AH là đường cao tam giác ABC , tính cos BAH^,d/ Gọi M là trung điểm Bc từ M kẻ đường thẳng vuông góc với BC cắt AC tại T tính độ dài AT?
Cho tam giác ABC vuông tại A, AB=3cm, AC=4cm. Gọi M là trung điểm của cạnh BC. Gọi d là đường thẳng qua M và vuông góc với BC, d cắt cạnh AC tại N. Tính độ dài MN.
Cho nửa đường tròn (O), đường kính AB=2R. Lấy một điểm C trên nửa đường tròn sao cho góc ABC=30 độ. Gọi P là giao điểm của tiếp tuyến tại A với nửa đường tròn đường thẳng BC.
a) CM: tam giác ABC vuông và PA^2=PB.PC
b) Từ P vẽ tiếp tuyến thứ hai với đường tròn (O) tại M(M là tiếp điểm). CM: PO là đường trung trực của AM
C)PO cắt AM tại N. Tính PA , PO , AM theo R
d) Vẽ MH vuông góc AB tại H. Gọi I là giao điểm của PB và MH. Tính NI theo R
cho tam giác abc vuông tại a đường cao ah chia cạnh huyền BC thành hai đoạn thắng BH và BC có độ dài lần lượt là 4cm và 9cm. Gọi D,E lần lượt là hình chiếu của H trên Ab, AC.
a) Tính De
b) Tính góc B, C
c) Cm: AD.AB = AE . AC
d) Gọi M là trung điểm của BC. Cm Am vuông góc DE
Cho tam giác ABC vuông tại A (AC>AB),đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
a) Cmr 2 tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m=AB.
b) Gọi M là trung điểm đoạn BE. Cmr 2 tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM.
c) Tia AM cắt BC tại G. C/m:\(\frac{GB}{BC}=\frac{HD}{AH+HC}\).
Cho tam giác ABC vuông tại A có AB = 3cm. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AB sao cho NA = 2NB. Biết rằng AM vuông góc với CN. Tính độ dài cạnh AC
Cho ∆ABC vuông tại A, đường cao AH. Biết AB = 12dm, BH = 9dm.
a) Tính BC, AC, AH.
b) Tính góc B và góc C (làm tròn đến độ)
c) Gọi M là trung điểm BC. Tính AM và chu vi ∆AHM.
Cho tam giác ABC trong đó BC = 11cm , góc ABC =38 độ góc ACB= 30 độ gọi điểm N là chân của đường vuông góc kẻ từ A đến cạnh BC . Hãy tính đoạn thẳng AN và cạnh AC