Cho hình chữ nhật ABCD có AB=mAD (m>0) . Qua A kẻ đường thẳng cắt đoạn BC và đường thẳng DC lần lượt tại M,N .CMR:
\(\dfrac{m^2}{AB^2}=\dfrac{m^2}{AM^2}+\dfrac{1}{AN^2}\)
Cho hình chữ nhật ABCD có AB=mAD (m>0) . Qua A kẻ đường thẳng cắt đoạn BC và đường thẳng DC lần lượt tại M,N .CMR:
\(\dfrac{m^2}{AB^2}=\dfrac{m^2}{AM^2}+\dfrac{1}{AN^2}\)
Bài 1: Cho hình vuông ABCD. Kẻ đường thẳng qua A cắt BC tại M và cắt CD tại I. CMR: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AI^2}\)
Bài 2: Cho ΔABC cân tại A có đường cao AH và BK. CMR: \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Bài 3: Cho ΔABC có \(\widehat{A}=60^0\), đường cao BD và CE. Gọi M là trung điểm của BC. CMR: ΔDEM là tam giác đều
cho tam giác ABC, một điểm M tùy ý trong tam giác. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, Ac, AB tại D,E, F. Chứng minh rằng: \(\dfrac{AM}{AD}+\dfrac{BM}{BE}+\dfrac{CM}{CF}\) là hằng số
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M. Đường thẳng vuông góc với AM tại A cắt đường thẳng CD tại N.
a. Chứng minh AM=AN.
b. Gọi gia điểm của đường thẳng AM với đường thẳng CD là I. Chứng minh \(\dfrac{1}{AM^2}+\dfrac{1}{AI^2}=\dfrac{1}{AB^2}\)
Giúp mình nha!
Tam giác ABC vuông tại A ( AB < AC ) , đường cao AH . Lấy M thuộc HC sao cho : HM = AH . Qua M kẻ đường thẳng vuông góc với AB cắt AC tại D .
Chứng minh : \(\dfrac{1}{AH^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC
cho hình thoi ABCD có A =12o độ tia Ax tạo với tia AB 1 góc BAx =15 độ và cắt cạnh BC tại M cắt đt CD tại N
CMR \(\dfrac{1}{AN^2}+\dfrac{1}{AM^2}=\dfrac{4}{3AB^2}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)