Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.
cho hinh chữ nhật ABCD, AB=16cm,AD=12cm.Kẻ AE vuông góc BD (E thuộc BD)
a) Chứng minh Tam giác ABC đồng dạng Tam giác EBA
b) Tính đoạn EB
c) Đường thẳng AE cắt các đường thẳng CD và BC thứ tự tại G và K.Chứng minh: AE2=EG.EK
d) Lấy điểm M trên cạnh AB,N trên cạnh BC;MN cắt BD ở I CMR: AB/BM+BC/BN=BD/BI
Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.
Cho tam giác ABC vuông ở A . Vẽ đường cao AH . Trung tuyến AM . Kẻ đường phân giác góc A cắt đường trung trực cạnh BC tại D . Từ D kẻ DE vuông góc với AB tại D , DF vuông góc với AC tại F
a) CM : AD là phân giác góc HAM
b) CM : 3 điểm E , M , F thẳng hàng
c) CM : Tam giác BDC vuông cân
Cho ∆ABC vuông tại A, AB>AC, M là 1 điểm tuỳ ý trên BC. Qua M kẻ đường thẳng vuông góc với BC cắt AB tại I và cắt tia CA tại D. Chứng minh rằng:
a) ∆ABC đồng dạng với ∆MDC
b) BI.BA=BM.BC
c) CI cắt BD tại K. Chứng minh BI.BA + CI.CK không phụ thuộc vào vị trí của điểm M
d) \(\widehat{MAI}=\widehat{BDI}\), từ đó suy ra AB là tia phân giác của góc MAK.
Cho tam giác ABC có AB=3,BC=5,CA=4.Lấy 2 điểm D,E lần lượt thuộc CA,AB sao cho góc AED= góc ACB.Tính tổng độ dài của DE cùng 2 đường vuông góc hạ từ D và E xuống BC