a: Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)
=>\(CH\cdot CB=CA^2\)
b: Ta có: ED//AH
AH\(\perp\)CB
Do đó: ED\(\perp\)CB tại D
Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\widehat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
=>\(CD\cdot CB=CE\cdot CA\)
c: Xét ΔABE vuông tại A có AB=AE
nên ΔABE vuông cân tại A
=>\(\widehat{AEB}=\widehat{ABE}=45^0\)
Xét tứ giác ABDE có \(\widehat{EDB}+\widehat{EAB}=90^0+90^0=180^0\)
nên ABDE là tứ giác nội tiếp
=>\(\widehat{BDA}=\widehat{BEA}=45^0\)
Xét ΔHAD vuông tại H có \(\widehat{HDA}=45^0\)
nên ΔHAD vuông cân tại H
=>HA=HD