Cho a,b,c,d thuộc Z.Thỏa mãn a+b=c+d.Mà a2+b2=c2+d2.Chứng minh a^2017+b^2017=c^2017+d^2017
Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
: Cho a,b,c thuộc R và a,b,c khác 0 thoả mãn b2 = ac. Chứng minh rằng:
a/c=(a+2012b)^2/(b+2012c)2
: Cho a,b,c
R và a,b,c
0 thoả mãn b2 = ac. Chứng minh rằng:
= 
Cho các số tự nhiên a, b, c thoả mãn 3a + 4b + 5c chia hết cho 7. Chứng minh rằng a + 6b4c cũng chia hết cho 7
Cho a,b,c,d là các chữ số (a,c thuộc 0) thoả mãn (12 x ab+cd) chia hết cho 11. Chứng minh abcd chia hết cho 11.
Cho A1,A2,A3,A4,.....,A100 là các số nguyên thoả mãn A1+A2+A3+....+A100=2*2019
Chứng minh rằng : A1*2+A2*2+A3*2+.…..+A100*2 chia hết cho 2
cho a,b,c,d thuộc N* thoả mãn a/b<c/d .Chứng minh rằng 2018a+c/2018b+d<c/a