cho 3 số a,b,c và thỏa mãn a^2=b^2+c^2 và b^2=2c^2-8.tính giá trị của M =5a^2-7b^2-c^2
cho 3 số a,b,c và thỏa mãn a2=b2+c2 và b2=2c2-8.tính giá trị của M =5a2-7b2-c2
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Cho các số nguyên a, b, c:
a)Tính giá trị biểu thức: $M=ab-ac+b^2-bc$M=ab−ac+b2−bc trong đó $a+b=0$a+b=0
b)Biết $ab-ac+bc-c^2=-1$ab−ac+bc−c2=−1. Chứng minh a,b là 2 số đối nhau
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
Cho các số a,b,c khác 0 thỏa mãn \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\) ( hình như kết quả = 1 )
cho 3 số a,b,c có tổng khác 0 và thỏa mãn: 3 phần a+b =2 phần b+c =1 phần c+a .Tính giá trị của biểu thức :A=a+b+3c phần a+b-2c (giả thiết các tỉ số điều có nghĩa )
Cho a,b,c thỏa mãn:
\(a^2+b^2+c^2=\frac{b^2-c^2}{a^2+8}+\frac{c^2-a^2}{b^2-7}+\frac{a^2-b^2}{c^2+5}\)
Tính giá trị của M=30a+4b+1975c