a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp đường tròn đường kính AH
Tâm M là trung điểm của AH
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp đường tròn đường kính AH
Tâm M là trung điểm của AH
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
cho ∆ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF, cắt nhau tại H
a) CM: tứ giác BCEF nội tiếp đường tròn và xác định tâm I của đường tròn ngoại tiếp tứ giác
b/ Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O ) tại K và T
( K nằm giữa M và T ) .Chứng minh : MD. MI = MK. MT
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=MD.MI
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và G. Cm G là trung điểm của đoạn NS
cho tam giác ABC có ba góc nhọn ,AB>AC nội tiếp đường tròn tâm (O,R) hai đường cao AD,CF cắt nhau tại H
a) CM tứ giác BDHF nội tiếp ? xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt
Cho tam giác ABC nhọn nội tiếp (O), có BE , CF là 2 đường cao cắt nhau tại H
a) Cm: tứ giác BEFC nội tiếp, xác định vị trí tâm I của đường tròn đó.
b) vẽ AK là đường kính của (O). Cm: H, I, K thẳng hàng
c) gọi D là giao điểm của AH và BC. Cm 4 điểm : D,E,F,I cùng thuộc 1 đường tròn
Cho tam giác nhọn ABC góc B bằng 60 độ nội tiếp đường tròn tâm O bán kính 3 cm .Hai đường cao BE CF cắt nhau tại H . Chứng minh tứ giác AEHF nội tiếp? Tính độ dài cung nhỏ BC?
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O).
Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. CMR:
a/. Các tứ giác AEHF, BCEF nội tiếp
b/ AD.BC = BE AC
c/. CMR BHM cân
Cho tam giác ABC nhọn nội tiếp (O), có BE , CF là 2 đường cao cắt nhau tại H
a) Cm: tứ giác BEFC nội tiếp, xác định vị trí tâm I của đường tròn đó.
b) vẽ AK là đường kính của (O). Cm: H, I, K thẳng hàng
c) gọi D là giao điểm của AH và BC. Cm 4 điểm : D,E,F,I cùng thuộc 1 đường tròn