cho 3 số a+b+c khác 0 thỏa mãn điều kiện a+b+c =1 và 1 phần a + 1 phần b + 1 phần c =1 . CMR: có ít nhất 1 số bằng 1
[ giải đầy đủ giúp mình nhé :)]
Giải giúp mình bài này với:
Cho a, b, c là cã số dương, chứng tỏ:
a) a/b+b/c >hoặc =2
b) (a+b+c) (1/a+1/b+1/c) > hoặc = 9
cho a,b,c là các số thực thỏa mãn : ab+bc+ca = abc
và a+b+c =1.chứng minh rằng : (a-1).(b-1).(c-1)=0
các bạn giúp mình nhanh với
ai giúp với
cho các số thực a,b,c thỏa mãn 0<a<b, b^2< hoặc 4ac. cmr a+b+c/b-a > hoac =3
nhanh mình tick nha
Cho a, b, c là các số dương thỏa mãn a+b+c=6
CM: a, 1/a + 1/b + 1/c lớn hơn hoặc bằng 3/2
b, a^2/c + b^2/a + c^2/b lớn hơn hoặc bằng 6
Cho a,b,c là các số thực dương thỏa mãn abc = 1
CMR: \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Mong cô Chi tick cho bn nào làm được câu này để giúp các bn có động lực giúp em với ạ:))
Cho các số dương a,b,c thỏa mãn điều kiện a+b+c=6 . Chứng minh rằng :
\(\frac{ab}{6+a-c}+\frac{bc}{6+b-c}+\frac{ca}{6+c-b}\le2\)
các bạn làm bài này bằng nhiều cách giúp mình nhé và các bạn cũng có thể trả lời cho mình bằng những câu hỏi tương tự . cảm ơn các bạn nhiều :))
Cho a, b, c là các số dương thỏa mãn a+b+c=6
CM: a, 1/a + 1/b + 1/c lớn hơn hoặc bằng 3/2
b, a^2/c + b^2/a + c^2/b lớn hơn hoặc bằng 6
(dùng bđt cô-si)
cho a,b,c,d là các số nguyên dương đôi 1 khác nhau thỏa mãn:
a/a+b + b/b+c + c/c+d + d/d+a =2. Chứng minh: rằng tích a.b.c.d là 1 số chính phương
Giải nhanh hộ mình với, thanks.