xét hiệu
\(\dfrac{a^2+b^2+c^2}{3}-\dfrac{\left(a+b+c\right)^2}{9}\ge0\)
<=> \(\dfrac{3\left(a^2+b^2+c^2\right)}{9}-\dfrac{\left(a+b+c\right)^2}{9}\ge0\)
<=>\(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2ac-2bc\ge0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
<=> (a-b)2 +(b-c)2 +(c-a)2 ≥ 0 (luôn đúng)
=> đpcm)