Cho a,b,c đôi một khác nhau. CMR: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Cho a,b,c đôi một khác nhau. CMR:
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2\)
Chứng minh rằng với a, b, c là các số đôi một khác nhau thì:
\(\frac{a^2\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{b^2\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{c^2\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=x^2\)
cho a,b,c khác nhau CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{b-c}+\frac{2}{c-a}+\frac{2}{a-b}.\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn \(0\le a;b;c\le2\)
CMR: \(\frac{1}{^{\left(a-b\right)^2}}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{9}{4}\)
Cho a,b,c>0. CMR: \(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+a\right)\left(c^2+a^2\right)}\ge\frac{a+b+c}{4}\)
Cho a,b,c là 3 số đôi một khác nhau.Tính giá trị biểu thức
A=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cho a,b,c đôi một khác nhau và ab+bc+ca=1
Tính
a) \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b)\(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
c)\(C=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{\left(1+y^2\right)}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho a, b, c đôi một khác nhau. Chứng minh \(^{\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\ge2}\)