Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Huy

cho a,b,c đều dương . Chứng minh \(\left(\frac{4a}{b+c}+1\right)\left(\frac{4b}{a+c}+1\right)\left(\frac{4c}{a+b}\right)>25\)

Phạm Bảo Chi
15 tháng 10 2018 lúc 19:05

k mk nha

k mk nha!

#meo#

Duy Vũ
17 tháng 12 2022 lúc 21:25

$A=\frac{64abc}{(a+b)(b+c)(c+a)}+1+\frac{16ab}{(b+c)(c+a)}+\frac{16bc}{(b+a)(c+a)}+\frac{16ac}{(a+b)(a+c)}+4.(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c})=4.(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c})+\frac{64abc}{(a+b)(b+c)(c+a)}+\frac{16ab(a+b)+16bc(b+c)+16ac(a+c)}{(a+b)(b+c)(c+a)}+1=4(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})+\frac{64abc}{(a+b)(b+c)(c+a)}+\frac{16(a+b)(b+c)(c+a)-32abc}{(a+b)(b+c)(c+a)}+1=4(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b})+\frac{32abc}{(a+b)(b+c)(c+a)}+17=4\left [\frac{a}{b+c} +\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{(a+b)(b+c)(c+a)} \right ]+\frac{16abc}{(a+b)(b+c)(c+a)}+17\geq 4.2+17+\frac{16abc}{(a+b)(b+c)(c+a)}=25+\frac{16abc}{(a+b)(b+c)(c+a)}> 25$

( Do áp dụng bđt Schur mở rộng là :$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{(a+b)(b+c)(c+a)}\geq 2$


Các câu hỏi tương tự
Nguyễn Minh Đăng
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Anh Tuấn
Xem chi tiết
hhhhh
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Bá Huy h
Xem chi tiết
Minh Anh
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết