CMR
\(\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
Cho 3 số a,b,c đôi một phân biệt. CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\\ \)
Cho \(0\le a\le b\le c\le1\Leftrightarrow\left(\frac{a}{bc+1}\right)+\left(\frac{b}{ac+1}\right)+\left(\frac{c}{ab+1}\right)\le2\)
Các bạn chứng minh rõ ràng hộ mình với.
:)
Cho abc khác 0 và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\) . Tính P= \(\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)\)
Cho a,b,c khác 0 và a - b - c = 0
Tính biểu thức \(A=\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\)
Cho ba số a; b; c đôi một phân biệt. Chứng Minh Rằng:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
cho a,b,c khác 0 và a-b-c=0,tính giá trị của biểu thức:A=\(\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)
cho 3 số đôi 1 khác nhau .CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Cho a, b, c khác 0 thoả mãn a+b+c=0. Tính \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)