Ta có:\(\frac{a}{b}=\frac{b}{c}=>\frac{a}{b}.\frac{b}{c}=\frac{a}{b}.\frac{a}{b}=>\frac{a.b}{b.c}=\frac{a^2}{b^2}=>\frac{a}{c}=\frac{a^2}{b^2}\)
\(\frac{a}{b}=\frac{b}{c}=>\frac{a}{b}.\frac{b}{c}=\frac{b}{c}.\frac{b}{c}=>\frac{a.b}{b.c}=\frac{b^2}{c^2}=>\frac{a}{c}=\frac{b^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)
=>\(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\)