Từ \(a+b=10=>\left(a+b\right)^2=100=>a^2+2ab+b^2=100=>a^2+2.4+b^2=100.\)
\(\Rightarrow a^2+b^2=92\)
\(\left(a^2+b^2\right).\left(a^3+b^3\right)=a^5+a^2b^3+a^3b^2+b^5=92.880\)
\(=>a^5+b^5+a^2b^2\left(a+b\right)=80960\)
\(=>a^5+b^5+\left(ab\right)^2\left(a+b\right)=80960\)
\(=>a^5+b^5+4^2.10=80960\)
\(=>a^5+b^5=80800\)