cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
cho x,y>0 thay đổi thỏa mãn xy=2. tìm GTNN của \(P=\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
cho x,y>0. tìm GTNN của \(A=\dfrac{x^2+y^2}{xy}+\dfrac{\sqrt{xy}}{x+y}\)
Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
Cho biểu thức : P = \(\dfrac{x^2+2xy+9y^2}{x+3y-2\sqrt{xy}}\)- 2\(\sqrt{xy}\); với x,y > 0
a, Rút gọn P
b, Tìm điều kiện của x,y để biểu thức \(\dfrac{P}{\sqrt{xy}+y}\) đạt GTNN. Tìm GTNN đó
Cho 2 số dương a,b. Các số dương x,y thay đổi sao cho \(\frac{a}{x}+\frac{b}{y}=1\). Tìm x,y để S=x+y đạt GTNN. Tìm GTNN đó theo a,b
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho x>0, y>0 thoã x+y≤1. Tìm GTNN của biểu thức
A=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
Cho x,y>0
Tìm GTNN của:
B= \(\dfrac{x}{y}\)+\(\dfrac{y}{x}\)+\(\dfrac{xy}{x^2+xy+y^2}\)