Bài này theo mình nên chọn phương án phân tích ĐTTNT từ điều kiện đầu tiên!
2a² + 2b² = 5ab
<=> 2a² - 5ab + 2b² = 0
<=> 2a² - 4ab - ab + 2b² = 0
<=> 2a(a - 2b) - b(a - 2b) = 0
<=> (a - 2b)(2a - b) = 0
<=> [a = 2b
.......[ a = b/2 (Loại vì a > b)
Thay a = 2b vào biểu thức ta có:
. .2b + b . . .. 3b
------------ = ---------- = 3
. .2b - b . . . . b
\(2\left(a^2+b^2\right)=5ab\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow\left(2a^2-4ab\right)-\left(ab-2b^2\right)=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\b=2a\end{cases}}\)
Lại có : a > b > 0
=> a = 2b
=> \(A=\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)
Vậy \(A=1\)
2(a2+b2)=5ab
\Leftrightarrow2a^2+2b^2-5ab=0⇔2a2+2b2−5ab=0
\Leftrightarrow\left(2a^2-4ab\right)-\left(ab-2b^2\right)=0⇔(2a2−4ab)−(ab−2b2)=0
\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0⇔2a(a−2b)−b(a−2b)=0
\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0⇔(2a−b)(a−2b)=0
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\b=2a\end{cases}}\)
Lại có : a > b > 0
=> a = 2b
=> A=\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1A=2a+b3a−b=2.2b+b3.2b−b=5b5b=1
Vậy A=1A=1