Cho a,b,c là các số thực dương thỏa mãn a + b + c = 1
Chứng minh rằng : \(\frac{1}{\sqrt{\left(a^2+ab+b^2\right)\left(b^2+bc+c^2\right)}}+\frac{1}{\sqrt{\left(b^2+bc+c^2\right)\left(c^2+ca+a^2\right)}}+\frac{1}{\sqrt{\left(c^2+ca+a^2\right)\left(a^2+ab+b^2\right)}}\ge4+\frac{8}{\sqrt{3}}\)
Cộng tác viên giúp với !
Cho a, b, c là 3 số thực dương thỏa mãn
\(\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\left(abc\right)^2\)
Chứng minh rằng: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)+\left(1+\frac{c}{a}\right)=8\)
Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Chứng minh rằng: \(\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}+\frac{b^2}{\left(bc+2\right)\left(2bc+1\right)}+\frac{c^2}{\left(ac+2\right)\left(2ac+1\right)}\ge\frac{1}{3}\)\(\frac{1}{3}\)
Cho 3 so thuc a,b,c khong am thỏa mãn (a+b)(b+c)(c+a)>0.Chứng minh rằng
\(\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}\ge\)\(\frac{9}{4\left(ab+bc+ac\right)}\)
1. Cho 2 số thực a, b thỏa điều kiện ab = 1, a + b khác 0. Tính GTBT:
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
2. Giải phương trình \(2x^2+x+3=3x\sqrt{x+3}\)
3. Chứng minh rằng \(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\) với mọi a, b, c nguyên.
4. Cho 2 số dương a, b thỏa mãn \(a+b\le1.\) Chứng minh rằng: \(a^2-\frac{3}{4a}-\frac{a}{b}\le-\frac{9}{4}\)
Cần GẤP nhé m.n!!! m.n ko cần phải làm hết đâu...
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3abc. Chứng minh rằng :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left[\frac{a^4}{\left(ab+1\right)\left(ac+1\right)}+\frac{b^4}{\left(bc+1\right)\left(ab+1\right)}+\frac{c^4}{\left(ca+1\right)\left(bc+1\right)}\right]\ge\frac{27}{4}\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{8}{9}\)
Cho các số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)
Cho a, b,c là các số thực dương thỏa mãn: \(ab+bc+ca=1.\)
Chứng minh rằng: \(\frac{1}{abc}+\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9\sqrt{3}}{2}\)