Cho hàm số \(f\left(x\right)\) là hàm số bậc hai với hệ số \(a>0\), thỏa mãn \(\left|f\left(x\right)\right|\le1,\forall x\in\left[-1;1\right]\) và biểu thức \(P=\dfrac{8}{3}a^2+2b^2\) đạt giá trị lớn nhất. Tính giá trị của biểu thức \(Q=5a+11b+c.\)
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái tị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá tị biểu thức S=2m+5n
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
cho a , b là các số dương thỏa mãn \(\sqrt{a+7}+\sqrt{b+7}=9\).tìm giá thị lớn nhất của biểu thức \(A=\sqrt{a}+\sqrt{b}\)
Cho các số thực dương x,y thỏa mãn x+2y+3xy=3 . Biết rằng biểu thức P= x+y đạt giá trị nhỏ nhất bằng \(\frac{a\sqrt{b}-c}{3}\)
trong đó a,b,c là các số nguyên dương . Gọi S là tập hợp các giá trị của M= a+b+c , tính tổng bình phương các phần tử của S
Cho các số thực dương a,b thỏa mãn \(a+b=\frac{1}{a^2}+\frac{1}{b^2}\). Tìm giá trị nhỏ nhất \(P=a^4+b^4+a^2b^2-a^2-b^2+3\)
Cho x,y,z là các số thực dương, thỏa mãn \(x+y+z\le1\)
Tìm giá trị nhỏ nhất của biểu thức \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Cho a, b, c là các số thực dương thỏa mãn\(ab+2bc+2ca=7\) . Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
Tìm giá trị nhỏ nhất của biểu thức P = 4x + y + 3; với x,y là các số thực dương thỏa mãn x + y + xy ≥ 8