Cho a.b là hai số thực dương thỏa mãn điều kiện \(a+b< 1\)
Chứng minh rằng:\(\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\ge\frac{5}{2}\)
Hơi khó nên cần giúp đỡ ai biết thì chỉ giùm
Cho a,b là các số thực dương thỏa mãn a + b = 4ab
CMR: \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Mong các bạn giúp mình sớm.
Cho a,b và c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3
CMR \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho các số thực dương a, b,c thỏa mãn a+b+c=9. CMR: \(\frac{a^2}{b+1}+\frac{b^2}{c+1}+\frac{c^2}{a+1}\ge\frac{27}{4}\)Mong các chuyên toán hỗ trợ ạ!
Cho các số thực dương thỏa mãn a+b+c =9. CMR: \(\frac{a^2}{b+1}+\frac{b^2}{c+1}+\frac{c^2}{a+1}\ge\frac{27}{4}\)Mong các cao nhân hỗ trọ bằng BĐT Cauchy ạ!
Bài 1 Cho a,b,c,d là 3 số không âm CMR
\(a,\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\le\frac{a+b+c}{2}\)
\(b,\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)
Bài 2 Cho a,b,c là 3 số không âm thỏa mãn a+b+c=1 CMR
\(a,\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le3,5\)
\(b,\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\le\sqrt{6}\)
Bài 3 Cho \(|x|< 1;|y|< 1CMR\) \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Cho các số dương a, b, c thỏa mãn \(a+b+c=1\). Chứng minh rằng :\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{100}{3}\)
Cho các số thực ko âm a,b thỏa mãn (1+a)(1+b)=\(\frac{9}{4}\).Chứng minh
a, a+b\(\ge\)1
b, \(a^2+b^2\)\(\ge\frac{1}{2}\)