Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nothing

Cho a,b là bình phương của hai số lẻ liên tiếp . Chứng minh rằng : A=ab-a-b+1 chia hết cho 48 

Nguyễn Ngọc Anh Minh
10 tháng 3 2021 lúc 8:34

Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)

\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)

\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp

Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48

Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2

\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)

Ta thấy \(B⋮2;B⋮8\)

(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)

\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)

\(\Rightarrow A⋮48\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vinh Ngo
Xem chi tiết
Nguyễn Hoàng Sơn
Xem chi tiết
Nguyen Duong
Xem chi tiết
winx
Xem chi tiết
lê tuấn anh
Xem chi tiết
Lỗ Thị Thanh Lan
Xem chi tiết
Huy Hoàng
Xem chi tiết
roronoa zoro
Xem chi tiết
Phương Linh
Xem chi tiết