Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
cho 3 số thực dương thỏa mãn : abc+a+b=3ab . c/m :
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{a}{ac+a+1}}+\sqrt{\dfrac{b}{a+b+1}}\ge\sqrt{3}\)
cho a,b là 2 số thực dương sao cho (\(\sqrt{a}\)+1)(\(\sqrt{b}\)+1)≥4
tìm min P= \(\dfrac{a^2}{b}\)+ \(\dfrac{b^2}{a}\)
Mình bik làm bài này r nhưng dài quá
Cok ai giúp mik cách khác dc k
Cho các số dương a,b,c thỏa mãn a+b+c=abc . tìm giá trị lớn nhất của bt
\(S=\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ca\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
Tìm \(a\in Z\) để \(P\in Z\)
cho biểu thức: A=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\dfrac{a}{b-a}\right):\left(\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{a}{a+b+2\sqrt{ab}}\right)\)với a và b là các số dương khác nhau
a) rút gọn biểu thức: A-\(\dfrac{a+b+2\sqrt{ab}}{b-a}\)
b) tính giá trị của A khi a=\(7-4\sqrt{3}\)và b=\(7+4\sqrt{3}\)
Rút gọn biểu thức sau:
a) A= \(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\dfrac{\sqrt{b}}{a-\sqrt{ab}}-\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
b) B=\(\left(\dfrac{2}{\sqrt{a}-\sqrt{b}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+b\sqrt{b}}.\dfrac{a\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\right):4\sqrt{ab}\)
giúp mình với ạ, mk cần gấp lắm
Cho a, b, c là các số thực dương thỏa mãn a + b = ab. Tìm GTNN của biểu thức :
\(P=\dfrac{1}{a^2+2a}+\dfrac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!