`a>b`
`<=>-a<-b`
`<=>-2a<-2b`
`<=>-2a+1<-2b+1`
Mà `-2b+1<-2b+4`
`=>đpcm`
`a>b`
`<=>-a<-b`
`<=>-2a<-2b`
`<=>-2a+1<-2b+1`
Mà `-2b+1<-2b+4`
`=>đpcm`
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh rằng : a/(-a+2b+2c) + b/(-b+2a+2c) + c/(-c+2a+2b) >=1
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
cho ba số thực a,b,c dương thỏa mãn abc=1. chứng minh rằng a/(2b+a) + b/(2c+b) +c/(2a+c)>=1
Cho a,b,c là độ dài 3 cạnh tam giác. Chứng minh rằng:
\(\frac{a}{2b+2c-a}+\frac{b}{2b+2c-a}+\frac{c}{2a+2b-c}>=1\)
Cho a < b. Chứng minh rằng:
a) 1-3a < -3b
b) 2a-5 < 2b -3
Chứng minh rằng : nếu a , b , c là độ dài 3 cạnh tam giác thì
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
cho a, b, c là các số thực dương thỏa mạn abc=1 chứng minh rằng a/(2b+c) +b/(2c+b)+c/(2a+c)>=1