\(A\ge\frac{1}{2}\left(a^2+b^2\right)^2+\frac{4}{\left(a+b\right)^2}\ge\frac{1}{8}\left(a+b\right)^4+\frac{4}{\left(a+b\right)^2}=\frac{1}{8}+4=\frac{33}{8}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
\(A\ge\frac{1}{2}\left(a^2+b^2\right)^2+\frac{4}{\left(a+b\right)^2}\ge\frac{1}{8}\left(a+b\right)^4+\frac{4}{\left(a+b\right)^2}=\frac{1}{8}+4=\frac{33}{8}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
cho a,b>0 và \(a^3+b^3+6ab\le8\). tìm GTNN của \(P=\dfrac{1}{a^2+b^2}+\dfrac{3}{ab}+ab\)
Cho a,b > 0 và a + b = 1
Tìm GTNN của C = \(\frac{1}{ab}+\frac{1}{a^2+b^2}\)
Cho biểu thức
\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\)(với a>0,b>0 và a khác b
1, CM \(P=\frac{1}{ab}\)
2, Giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\). Tìm GTNN của P
a)cho a,b>0. CM : 9 (1+a)(1+b)\(\ge\)\(\left(1+\sqrt{ab}\right)^2\)
b)với a,b>0. Tìm GTNN của biểu thức: M=\(\left(1+a\right)\left(1+\frac{b}{a}\right)\left(1+\frac{4}{\sqrt{b}}\right)^2\)
C ho a,b >0 ; a+b=1
Tìm GTNN: P=\(\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab\)
Cho a, b, c là các số thực thỏa mãn 0<a, b, a<1 và ab + bc + ca = 1. Tìm GTNN của
P=\(\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
Cho a,b >0 và \(2a-ab-4\ge0\)
Tìm GTNN của \(T=\dfrac{a^2+2b^2}{ab}\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
cho \(\left(a+b-c\right)^2=ab\) và a,b,c>0 tìm GTNN của \(P=\dfrac{c^2}{a+b-c}+\dfrac{c^2}{a^2+b^2}+\dfrac{\sqrt{ab}}{a+b}\)