A = \(\overline{abc}+\overline{ab}+1997\)
B = \(\overline{1ab9}\) + \(\overline{9ac}\) + \(\overline{9b}\)
B = 1009 + \(\overline{ab0}\) + 900 + \(\overline{a0}\)+ c+ 90 + b
B = 1999 + \(\overline{abc}\) + \(\overline{ab}\) > \(\overline{abc}+\overline{ab}+1997\) = A
Vậy B > A