`A=4 + 4^2+4^3+...+4^2024`
`4A = 4.(4 + 4^2+4^3+...+4^2024)`
`4A = 4^2 +4^3 + 4^4 + ... + 4^2025`
`4A - A = (4^2 + 4^3 + 4^4 + ... + 4^2025) - (4 + 4^2+4^3+...+4^2024)`
`3A = 4^2025 - 4`
`A = (4^2025 - 4)/3`
`-> 3A + 4 = 2^n`
`=> 3 . (4^2025 - 4)/3 + 4=2^n`
`=> 4^2025 - 4 + 4 = 2^n`
`=> 2^4050 = 2^n`
`=> n = 4050`
Vậy: `n=4050`
\(A=4+4^2+4^3+...+4^{2024}\)
\(\Rightarrow4A=4^2+4^4+4^4+...+4^{2025}\)
\(\Rightarrow4A-A=4^2+4^4+4^4+...+4^{2025}-\left(4+4^2+4^3+...+4^{2024}\right)\)
\(\Rightarrow3A=4^{2025}-4\)
\(\Rightarrow3A+4=4^{2025}=\left(2^2\right)^{2025}=2^{4050}\)
mà \(3A+4=2^n\)
\(\Rightarrow n=4050\)