\(3A=3^2+3^3+3^4+...+3^{2007}\)
\(\Rightarrow3A-A=2A=3^{2007}-3^1=3.\left(3^{2006}-1\right)\)
Do đó \(A=\frac{3.\left(3^{2006}-1\right)}{2}\)
Ta có : \(2A+3=3^{2007}-3+3=3^{2007}=3^x\)
\(\Rightarrow x=2007\)
trả lời
\(A=\frac{3^{2007}-3}{2}\)
x=2007
+) \(A=3+3^2+3^3+....+3^{2006}\)
\(3A=3\left(3+3^2+3^3+....+3^{2006}\right)\)
\(3A=3^2+3^3+3^4+....+3^{2007}\)
\(3A-A=\left(3^2+3^3+3^4+....+3^{2007}\right)-\left(3+3^2+3^3+....+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
Vậy \(A=\frac{3^{2007}-3}{2}\)
+) Thay 2A=32007-3 vào 2A+3=3x ta có:
32007-3+3=32007=3x
=> x=2007