a2+b2+c2+3= 2(a+b+c)
=> a2+b2+c2+3=2a+2b+2c
=> (a2-2a+1) + ( b2 -2b+1)+ (c2-2c+1)=0
=> (a-1)2+(b-1)2+ (c-1)2=0
=> (a-1)2=(b-1)2=(c-1)2=0
=> a-1=b-1=c-1=0
=> a=b=c=1( đpcm)
a2+b2+c2+3= 2(a+b+c)
=> a2+b2+c2+3=2a+2b+2c
=> (a2-2a+1) + ( b2 -2b+1)+ (c2-2c+1)=0
=> (a-1)2+(b-1)2+ (c-1)2=0
=> (a-1)2=(b-1)2=(c-1)2=0
=> a-1=b-1=c-1=0
=> a=b=c=1( đpcm)
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
1. Cho a+b+c=a^2+b^2+c^2=1 và a/x=b/y=c/z
Cm: xy+yz+zx=0
2.Cho x/a+y/b+z/c=1 và a/x^2+b/y^2+c/z^2=0
Tính: A=x^2/a^2+y^2/b^2+z^2/c^2
3.Tìm a,b biết:(a-1)^2+(b-1)^2=10a+b
và 0<a<10; -1<b<10
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
1,Cm các đẳng thức sau
a,a(b-c)-b(a+c)+c(a-b)=-2bc
b,a(1-b)+a(a2-1)=a(a2-b)
c,a(b-x)+x(a+b)=b(a+x)
2,Cm
(3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
3,Cho f(x)=3x2-x+1 và g(x)=x-1
a,Tính f(x).g(x)
b,Tìm x để f(x).g(x)+x^2[3.g(x)]=5/2
cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
Chứng minh rằng ít nhất 1 trong 3 số a,b,c là bình phương của 1 số hữu tỉ
cho a,b,c,d thuộc N* b = a+c/2; 1/c = 1/2(1/b + 1/d) . cm a/b = c/d
1/ Cm: 2x2 + 8x+30 >0 với mọi x
2/ Cm: -x2- 2x - 12 <0 với mọi x
3/ Cho a+b+c=2. Thu gọn P=a(a+2.b)+b(b+2.b)+c(c+2.a)
Giúp mình với!
Cho a,b,c>0.CM:
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)