\(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2+2^2+2^3+...+2^{2009}\)
\(2A-A=(2+2^2+2^3+...+2^{2009})-(1+2+2^2+2^3+...+2^{2008})\)
\(A=2^{2009}-1\)
Mà \(B=2^{2009}\)
\(\Rightarrow B-A=2^{2009}-2^{2009}-1=-1\)
Vậy B - A = -1
Tham khảo tại : Câu hỏi của Phạm Lâm Hoàng - Toán lớp 6 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/13581346538.html
A = 1+2+22+23+...+22008
=> 2A = 2+22+23+24+...+22009
=> 2A - A = (2+22+23+24+...+22009) - (1+2+22+23+...+22008)
=> A = 22009-1
=> B - A = 22009 - (22009 - 1)
=> B - A = 22009 - 22009 + 1
=> B - A = 1
A=1+2\(+2^2+2^3+....2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+....+2^{2009}\)
\(\Rightarrow2A-A=2^{2009}-1\)
\(\Rightarrow A=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1\)
=1