Ta có :\(9A=9+1+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{98}}\)
\(8A=9A-A=9-\dfrac{1}{3^{100}}\)
Mà \(8A=9-\dfrac{1}{3^n}\Rightarrow n=100\)
Vậy n=100
Minh thiếu
\(8A=9A-A=\left(9+1+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{98}}\right)\\ -\left(1+\dfrac{1}{3^2}+\dfrac{1}{3^{\text{4}}}+...+\dfrac{1}{3^{100}}\right)\)
\(8A=9+1+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{98}}-1-\dfrac{1}{3^2}-\dfrac{1}{3^4}-...-\dfrac{1}{3^{100}}\)
\(8A=9+\left(1-1\right)+\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+...+\left(\dfrac{1}{3^{98}}-\dfrac{1}{3^{98}}\right)+\dfrac{1}{3^{100}}\)
\(8A=9-\dfrac{1}{3^{100}}\) Mà theo đề bài \(8A=9-\dfrac{1}{3^n}\)
\(\Rightarrow n=100\)
Vậy n=100