\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}\)
\(A< 1-\frac{1}{49}=\frac{48}{49}< \frac{48}{48}< \frac{40}{48}=\frac{5}{6}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}\)
\(A< 1-\frac{1}{49}=\frac{48}{49}< \frac{48}{48}< \frac{40}{48}=\frac{5}{6}\)
Cho A =1-1/2+1/3-1/4+...+1/49-1/50 Hãy chứng tỏ rằng 7/12<A<5/6
Cho A=1-1/2 +1/3 -1/4 +...+1/49 -1/50 Hãy chứng tỏ rằng 7/12<A<5/6
Chứng minh 1/2+1/3×4+1/5×6+...+1/49×50=1/26+1/27+....+1/50
A=1-1/2+1/3-1/4+1/5-1/6+....+1/49-1/40. chứng minh 7/12<A.5/6
Chứng tỏ A > 7 biết A =1 -1/2+1/3-1/4+ 1/5-1/6+...+1/49-1/50
Bài 1. Chứng minh rằng:
A = 2/3 . 4/5 . ... . 4998/4999 < 0,02
Bài 2. Chứng minh rằng:
a) 1/26 + 1/27 + ... + 1/56 = 99/50 - 97/49 + ... + 7/4 - 5/3 + 3/2 - 1
b) 1- 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200 = 1/101 + 1/102 + ... + 1/200
Cho A= 26/25 + 37/36 + 50/49 +...+ 10001/10000 . Chứng minh rằng: 96/1/6 < A < 96/1/4
1,Chứng minh rằng: 1<1/5+1/6+1/7+....+1/17<2
2,Cho A=1/2× 3/4×5/6×....×99/100
Chứng minh rằng 1/15<A<1/10
Bài 1 :Chứng tỏ rằng :
\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}\)\(-\frac{5}{3}+\frac{3}{2}-1\)
Bài 2 : Cho
\(A=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{4998}{4999}\)
Hãy so sánh A và 0,02