Ta có :
\(A+B+C\)
\(=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)\)
\(=xyz.1\)
\(=xyz\left(đpcm\right)\)
ta có: A + B + C = x2yz +xy2z + xyz2 = xyz.(x+y+z) = xyz.1=xyz
=> A+B+C = xyz
#
Ta có :
\(A+B+C\)
\(=x^2yz+xy^2z+xyz^2\)
\(=xyz\left(x+y+z\right)\)
\(=xyz.1\)
\(=xyz\left(đpcm\right)\)
ta có: A + B + C = x2yz +xy2z + xyz2 = xyz.(x+y+z) = xyz.1=xyz
=> A+B+C = xyz
#
Câu 1 : Cho hai đa thức:
A(x)=6x-4x³ +x-1 và B(x)=-3x-2x³-5x2+x+2. Tính A(x)+B(x) và A(x)−B(x)
Câu 2 : Cho: A = x’yz ; B = xyz ; C = xyz và x+y+z=1 Hãy chứng tỏ: A+B+C =xyz
Cho: A= x2yz ; B= xy2z ; C= xyz2 và x + y + z = 1. CMR: A + B + C = xyz
Cho : A=x2yz , B=xy2z , C=xyz2 và x+y+z=1 . Hãy chứng minh : A+B+C=xyz
Cho a,b,c,x,y,z nguyên dương và a,b,c khác 1 thỏa mãn :
a^x=bc; b^y=ca; c^z=ab
CMR: x+y+z+2=xyz
Cho: A=x^2yz;B=xy^2z;C=xyz^2 va x+y+z=1
hay chung to:A+B+C=xyz
cho a,b,c,x,y,z là các số nguyên dương và ba số a,b,c khác 1 thỏa mãn a^x=bc,b^y=ca,c^z=ab.Chứng minh rằng x+y+z+2=xyz
cho a,b,c,x,y,z là các số nguyên dương và ba số a,b,c khác 1 thỏa mãn a x bc,b y ca,c z ab.Chứng minh rằng x y z 2 xyz
cho các số nguyên dương a,b,c,x,y,z ( a,b,c>1) thỏa man: ax=bc; by=ca, cz=ab , . chứng minh rằng xyz= x+y+z +2
Cho a,b,c,x,y,z là các số nguyên dương và ba số a,b,c khác 1 thỏa mãn a^x=bc;b^y=ca;c^z=ab. chứng minh : x+y+z+2=xyz! Giup mk vs