Bạn tham khảo lời giải tại đây:
Bạn tham khảo lời giải tại đây:
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho a, b là số thực dương thỏa mãn a + b \(\ge1\)
Tìm GTNN: A = \(\dfrac{8a^2+b}{4a}+b^2\)
Cho a,b là các số thực dương thỏa mãn a+b=1
Tìm GTNN của biểu thức A=\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\)
cho 3 số a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=2\) Tìm Max P=abc
Cho 2 số thực dương a, b thỏa mãn \(a^3+b^3\le1\). Tìm GTLN: \(A=a+4b\)
cho x;y là các số thực dương thỏa mãn x +y \(\ge3\) tìm giá trị nhỏ nhất của S = x+y+ \(\frac{1}{2x}+\frac{2}{y}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{2017}{2017+b}+\dfrac{2018}{2018+c}\le1\). Tìm GTNN của \(P=abc\)
cho a b là các số thực dương thỏa mãn 2b≥ ab+4
Tìm min P \(\dfrac{ab}{a^2+2b^2}\)
Thầy Lâm giúp em với
cho a , b là các số thực dương thỏa mãn điều kiện 2b ≤ ab+4
Tìm max P = \(\dfrac{ab}{a^2+b^2}\)
Thầy lâm giúp em bài này với
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)