Cho biểu thức \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Cho biểu thức:
A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+...+\frac{1}{40}\)
Hãy chứng tỏ \(\frac{1}{2}\) < A < 1
So sánh\(\frac{1}{2}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}+\frac{1}{26}\)và 1
Câu 5.
Cho biểu thức A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}.\)
Chứng tỏ : \(\frac{1}{2}\) < A < 1
Bài 1: CMR: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)\(.\)
Bài 2: Cho các số nguyên dương a,b,c,d.
CTR: \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Ai nhanh nhất mình \(tick\)cho!
Chứng tỏ rằng:
a) \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<2\)
b) \(B=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{39}+\frac{1}{40}.\) Chứng tỏ \(\frac{1}{2}\)< B < 1
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}<\frac{1}{100}\)
Cho \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\)Chứng mainh:\(1< A< \frac{7}{3}\)
cho A = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}+\frac{1}{9^2}\)
CMR: A < 1/40