Với x > y > 0 : \(\left\{{}\begin{matrix}-\sqrt{y}< 0\\x-y>0\end{matrix}\right.\Rightarrow A=\frac{-\sqrt{y}}{x-y}< 0\)
Với x > y > 0 : \(\left\{{}\begin{matrix}-\sqrt{y}< 0\\x-y>0\end{matrix}\right.\Rightarrow A=\frac{-\sqrt{y}}{x-y}< 0\)
Khử mẫu của các biểu thức dưới dấu căn và rút gọn (nếu có thể được):
a.\(xy\sqrt{\frac{x}{y}}\) với x>0,y>0
b.\(\sqrt{\frac{-3x^3}{35}}\) với x<0
c.\(\sqrt{\frac{5a^3}{49b}}\) với a≥0,b>0
d.\(-7xy\sqrt{\frac{3}{xy}}\) với x<0,y<0
Chứng minh : A < 0 với y > x > 0
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}=\dfrac{2\sqrt{xy}}{x-y}\)
khử mẫu của biểu thức lấy căn
\(\frac{x}{y}\) \(\sqrt{\frac{y}{x}}\) với x,y>0
2/ \(\sqrt{\frac{x}{64y^3}}\) với x,y>0
Chứng minh :
a) \(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\) với \(x>0;y>0\)
b) \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}=x+\sqrt{x}+1\) với \(x\ge0;x\ne1\)
CM:
\(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{6}}{6}\)
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}+\sqrt{y}}=x-y\) với x.0, y>0, x≠y
\(\dfrac{\sqrt{y}}{x-\sqrt{xy}}+\dfrac{\sqrt{x}}{y-\sqrt{xy}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)với x>0, y>0, x≠y
\(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}-\sqrt{y}}=x-y\) với >0,y>0,x khác y
Phân tích các đa thức sau thành nhân tử:
a) \(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}\) b) \(\sqrt{1-a}+\sqrt{1-a^2}\) với -1< a <1
c) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\) với a > 0, b > 0
d) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\) với x > 0, y > 0
Khai triển và rút gọn biểu thức ( x ≥ 0, y ≥ 0 )
a, \(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
b, \(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+y\right)\)
c, \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
BT: Phân tích thành nhân tử
a, \(3-\sqrt{3}+\sqrt{15}-3\sqrt{15}\)
b, \(\sqrt{1-a}+\sqrt{1-a^2}\) ( với 1 > a > -1 )
c, \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\) ( với a,b > 0 )
d, \(x-y+\sqrt{xy^2}-\sqrt{y^3}\) ( với x,y > 0 )