Lời giải:
Ta có \(2a^2+a=3b^2+b\)
\(\Leftrightarrow 2a^2+a-2b^2-b=b^2\)
\(\Leftrightarrow (2a^2-2b^2)+(a-b)=b^2\)
\(\Leftrightarrow 2(a-b)(a+b)+(a-b)=b^2\)
\(\Leftrightarrow (a-b)(2a+2b+1)=b^2\)
Gọi $d$ là ước chung lớn nhất của $a-b$ và $2a+2b+1$.
\(\Rightarrow \left\{\begin{matrix} a-b\vdots d\\ 2a+2b+1\vdots d\end{matrix}\right.(1)\)
\(\Rightarrow b^2=(a-b)(2a+2b+1)\vdots d^2\Rightarrow b\vdots d\)
Kết hợp với (1) suy ra:
\(\left\{\begin{matrix} a\vdots d\\ 2a+1\vdots d\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2a\vdots d\\ 2a+1\vdots d\end{matrix}\right.\Rightarrow (2a+1)-2a\vdots d\Rightarrow 1\vdots d\Rightarrow d=1\)
Vậy \((a-b, 2a+2b+1)\) nguyên tố cùng nhau.
Mà tích của chúng lại là một số chính phương ($b^2$) nên mỗi số $a-b$ và $2a+2b+1$ cũng là một số chính phương.
Ta có đpcm.